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General background

– Nighttime light is an important data source for many applications 

– mapping long-term urbanization processes, such as urban 
boundaries, built-up areas, and impervious surface

– inferring the demographic and socioeconomic information, 
such as population, the gross domestic product (GDP), incomes, 
and the poverty

– Quantitatively identifying environment-related factors, such as 
electricity consumption, CO2 emissions, PM2.5 emissions, and 
surface temperature



General background

– The quality of existing nighttime light datasets limits its application
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– DMSP
– Temporal availability：

1992~2012
– Resolution：1km

– The Luojia-01
– Temporal availability：

2018-2019
– Resolution：~120m

– The PANDA datasets (ours):

– Advantages: long time 
span1984~2020

– Disadvantages: quality as the 
same as DMSP



General background

– Ultimate goal

– Improve the quality of the NTL images

– Challenges 

– Cross-modality feature fusion 

– Details improvement

– Spatial alignment

PANDA (DMSP) Luojia-01

– Quality evaluation aspects

– Spatial resolution

– Provide more high-frequency information

– Spatiotemporal alignment

– Overcome the over-saturation 
phenomenon.



Study area and datasets

– Landsat
– Temporal generalization and variation 

– DEM
– Temporal consistency 

– Local alignment
– Spatial consistency and alignment

– Current period:

– Overlapped 2018



Methodology

Inter-calibration

Spatially weighted Average 

Denoising 

Resampling 

Step1: data preprocessing

Multimodality input 

Supervised frames

Output NTL frames

Step2: model training Step3: model validation

MMNTLSR Model

MMNTLSR  Model

Step4: PANDA-FINE generation

MMNTLSR Model

Input

Output

PANDA-

FINE

Loss function

Evaluation Luojia-01 frames 

in 2018/2019

Landsat 8 (7 bands) 

in 2018/2019
DEM

Randomly split into 

training/testing/validating datasets



Current model Auxiliary supervision 

Residual module

BN+ReLU+Pooling

Downsampling module

Affined  NTL

DEM

Landsat 

NTL

×

Output ~1/2

Output ~1/4

Output ~1/1



Multi-modality data fusion module

– Motivation
– Overcome the gap between each input modality

Landsat PANDA DEM

Original resolution 30m 1000m 90m

Acquisition time 10~11 am 7:30~9:30 pm ——

Temporal consistency poor medium strong

Spatial consistency medium poor strong

Numbers of bands 7 1 1

Datatypes 12 (8) bit integer 6 bit integer 16 bit integer

Data range ~about 3000 0~63 0~8776



Multi-modality data fusion module

…

…

…

Adaptive module

Residual module

BN+ReLU+Pooling

Upsampling layer

Concatenation

Ouput conv

Modality A

Modality B

Modality C

Fused multi-

modality 

features

– Fuse multi-modality 
features parallelly from 
high to low

– It significantly improves 
the fused results 
compared to simply the 
concatenation 



Local-global refinement module
super-resolution + auxiliary supervision + multi-scale 
prediction losses

– Super-resolution heads improve the global 
performance

– Auxiliary supervision helps the model to 
implicitly learn how to predict in over-
saturation areas

– Multi-scale prediction loss furtherly improves 
the underestimation area • Improve the resolution

• Overcome the over-saturation phenomena  



Spatial alignment module
Local deformation + deformable CNN + affine 
transformation

– Local deformation
– already proved its effectiveness in 

local alignment in previous work

– Affine transformation
– Works with deformation parameters

– Deformable CNN
– Is relatively small in parameters
– Efficient in tackling global 

misalignment 
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– September 
– Best results: PSNR 15.656

– Current results achieve significant 
improvements regarding visual 
performance

– Continuingly making progresses in 
PSNR 

– Further improvements in the local 
area are needed in the future

Experimental results 



Input NTL Prediction Ground truth Abs. error map

Experimental results 
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Experimental results 



Input NTL

Prediction
Ground truth 
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Experimental results 



Discussion

w/o multi-scale prediction loss

w/o Local deformation 

w/o auxiliary supervision     

w/o deformable CNN 

w/o affine transformation 

w/o multimodality fusion



– Underestimate area
– tourist attractions (大唐不夜城: Tang Dynasty 

Everbright City)

Input NTL

Prediction Ground truth

Abs. error map

Discussion



– Underestimate area
– tourist attractions (员林龙灯夜市: Yuanlin Dragon 

Lantern Night Market)

Input NTL

Prediction Ground truth

Abs. error map

Discussion



Conclusions 

– We propose an integrated algorithm for jointly improving the quality of DMSP-like 
PANDA with multimodality fusion and super-resolution

– We propose a multimodality data fusion module for efficiently fusing three 
different modality data sources, including DEM, Landsat, and NTL images.

– We propose a Local-global refinement module to achieve better performance in the 
local and global areas.

– We propose a spatial alignment module to tackle the misalignment in the input 
data source. 

In the future
– Furtherly improve the performance
– Evaluate the temporal generalization of the proposed algorithm
– ???
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